Telegram Group & Telegram Channel
⚙️ Работает ли Adam при экстремально разреженных градиентах

Когда градиенты обновляются редко — например, в задачах обработки языка (NLP) или рекомендательных системах — может показаться, что базовый SGD будет более эффективным. Однако у Adam всё ещё есть свои преимущества.

💡 Почему Adam может быть полезен:
⭕️ Он масштабирует шаги обучения по каждому параметру отдельно, используя скользящие средние градиентов (1-го и 2-го порядка).
⭕️ Даже если градиенты редкие, Adam может обеспечить значимые апдейты по тем параметрам, которые активируются нечасто, например, для редких токенов в эмбеддингах.

⚠️ Но есть и подводные камни:
⭕️ Если параметр обновляется крайне редко, его скользящие средние могут оставаться почти нулевыми слишком долго → шаг становится почти нулевым.
⭕️ В таких условиях нужно особенно тщательно настраивать «beta1», «beta2» и «learning rate» — слишком «инерционные» настройки могут замораживать обновления навсегда.
⭕️ Примеры таких кейсов — миллионные эмбеддинг-таблицы в рекомендательных системах, где важна тонкая настройка скорости обучения для редких признаков.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/973
Create:
Last Update:

⚙️ Работает ли Adam при экстремально разреженных градиентах

Когда градиенты обновляются редко — например, в задачах обработки языка (NLP) или рекомендательных системах — может показаться, что базовый SGD будет более эффективным. Однако у Adam всё ещё есть свои преимущества.

💡 Почему Adam может быть полезен:
⭕️ Он масштабирует шаги обучения по каждому параметру отдельно, используя скользящие средние градиентов (1-го и 2-го порядка).
⭕️ Даже если градиенты редкие, Adam может обеспечить значимые апдейты по тем параметрам, которые активируются нечасто, например, для редких токенов в эмбеддингах.

⚠️ Но есть и подводные камни:
⭕️ Если параметр обновляется крайне редко, его скользящие средние могут оставаться почти нулевыми слишком долго → шаг становится почти нулевым.
⭕️ В таких условиях нужно особенно тщательно настраивать «beta1», «beta2» и «learning rate» — слишком «инерционные» настройки могут замораживать обновления навсегда.
⭕️ Примеры таких кейсов — миллионные эмбеддинг-таблицы в рекомендательных системах, где важна тонкая настройка скорости обучения для редких признаков.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/973

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Why Telegram?

Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.

Библиотека собеса по Data Science | вопросы с собеседований from sg


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA